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Executive Summary
In a study conducted and published by the United States Environmental Protection

Agency (EPA), It was shown that Global emissions due to burning of fossil fuels have increased
almost exponentially since 1900. From 1970, there has been more than a 90% increase in
emissions and greenhouse gases, with the emissions from burning fossil fuels and fossil fuel
based combustion contributing to about 78% of the total greenhouse gas emissions[1].

A natural step for city planners to combat this issue is to explore ways to reduce the
dependency on transportation such as personal cars and other motorized vehicles. One way
that this has been implemented is with the introduction of bike lanes to push the public into
using bikes for intra-city travels. While this may be effective in specific cities and during certain
times of the year, more needs to be done in order to allow people to move from one place to
another. For example, during winter months in Michigan, where people may not want to cycle as
much, may prefer to take the bus to get to their destination. This provides the city planners an
opportunity to reduce the emission of greenhouse gases by switching the bus system to either a
hybrid or an all-electric fleet. A report published by The National Resources Defence Council
(NRDC) in 2015 has shown that using either hybrid or electric systems for transportation
systems has the potential to dramatically reduce the lifetime emissions of greenhouse gases by
as much as 77%, which is equivalent to reducing emissions   by 1700 million metric tons relative
to 2015 levels.

The aim of this project is to simulate the University bus (or M-Bus) system for the city of
Ann Arbor using 4 different types of buses - conventional buses (liquid fuel based), all electric
buses, and hybrid buses. We aim to aid the city planner in making a decision on which type of
bus would be the most feasible for the given situation. In order to make this decision, we
compare several metrics associated with the operational feasibility of different alternatives
through sensitivity analysis on performance based measures, number of buses in the fleet and
the level of fuel to be maintained at the start of each day. The simulation model proposed in the
paper consists of two parts - a recharging/refilling station (which is modeled in the form a route)
and the actual transportation model itself. The transportation network is in the form of a network
flow and utilizes a start and end node which represent a bus depot from which the buses are
assigned to different routes. The routes are cyclic which makes the re-deployment of a bus to
another route  possible.

We hope that the simulation model will give us (and the decision makers) insights about
the level of complexity involved in the decision making process as well as a starting point as to
what to look into, and consider, in the event that the planners are looking to switch to a hybrid or
even a fully electric system.



1. Introduction

Figure 1: Schematic representation of the routes in the proposed system

As a part of smart urban construction, the first ever hybrid M-bus was introduced to Ann
Arbor in 2012, as part of the school's commitment to sustainability. Allowing for better fuel
mileage and lower emissions, it is predicted that in the future, the service of bus transportation
will be supported fully by electric vehicles.

In this paper we aim to simulate the transportation network of Blue bus routes based on
time varying demands throughout the day. The model will provide us insights on bus planning
strategy, help us understand the challenges associated with switching to hybrid vehicles
compared to conventional vehicles in a high capacity system, and help us understand
associated costs for running the system.

With a pre-designated number of buses that are available to be deployed, we view the
problem from a system’s perspective and investigate the sensitivity of different arrangements of
buses. Here the objective is actually threefold where we’re trying to get insight on financial,
environmental and time aspects of different alternatives which are major factors that decision
makers focus on. With the data generated from simulating both the transportation and refueling
systems, we estimate the total cost of operation of all bus types in a system and thus give
financial advice on possible bus systems transitioning.

The rest of the paper is organized as follows. The next section introduces the relevant
background and literature review. In Section 4, we formally describe the problem and how we
approach it through simulation modelling. Computational results are reported and analyzed in
Section 5 and Section 6; summary and concluding remarks are given in Section 7.



2. Background
3.1 Literature Review

Emission mitigation is one of the more important topics in today's times. The
transportation sector contributes immensely to the burning of fossil fuels with several nations on
their way to significantly reduce this consumption with the introduction of electric vehicles.
Commercial fleets such as public buses are seen as a starting point for this transformation.
However, the reduced operational performance of electric vehicles is still seen as a barrier in
this transition. Our aim is to present a model for the comparison of public bus fleets using
different fuel sources in order to assist city planners and management in making such decisions.

In the study by Nyman, J. et al. 2017 [14], data on route specifications, timetables, and other local
factors are used to examine e-buses and charging systems from a total cost viewpoint. The
authors have also created a user-friendly tool that allows users to examine and quantify
trade-offs between EV battery capacity, charging infrastructure costs, and car fleet running
expenses. However, all routes are simulated as straight lines with no variances or time delays
taken into account which makes the model not as suitable for real time analysis.

Pelletier et al. [2] provides a comprehensive assessment focusing on electric cars. The
methodologies mentioned differ in terms of the vehicle types studied, homogeneous or
heterogeneous electric car fleets, with and without conventional combustion engine vehicles,
and the mechanism for dealing with charging events. Goeke et al. [16] and Lebeau et al.[17]

conducted considerable research on the routing of mixed fleets of conventional and electric
cars. They stressed the importance of taking into account vehicle types' distinctive energy
consumptions, particularly for cars of varied weights, which drove the energy consumption
simulation in this study. Van Duin et al. [18] did not consider battery charging, however,
Gonçalves et al. [19] defined charging as being possible at any customer's location.

When conducting bus fleet simulations, a city bus transport optimization study, by Tiechert et al.
[20], focuses on an artificial urban bus driving cycle, ignoring influential elements such as city
traffic congestion, frequent stops, and so on. According to the authors Xylia et al.[21], cutting the
cost of gasoline for electric buses can offset the high investment costs associated with charging
infrastructure while also resulting in considerable reductions in polluting emissions. To that end,
extensive techno-economic evaluations comparing the Total Cost of Ownership (TCO) of
traditional and electric fleets should be carried out.

De Filippo et al. [10] simulated the battery electric bus system over six transit corridors serving
Ohio State University main campus. They’ve pointed out in their result that the frequency of
service might be harmed if they substitute the current fleet with fully-electrified vehicles.
However, they’ve also mentioned that additional infrastructure, like charging stations or
high-performance batteries, could be utilized to maintain or even improve the performance of



the system, which might add significant financial burden on the implementation of Battery
Electric Buses (BEB).

Perrotta et al. [12] investigated the relation between route characteristics and energy
consumption. By simulating on three major bus routes in the city of Oporto, they have argued
that curvy routes and short travel distance between stops are the most energy demanding.
Kontou and Miles [11] have also analyzed the operational measures of a battery electric bus
project at Milton Keynes, they conclude that the actual performance of the buses and charging
system is reasonably comparable to and consistent with the theoretical one, considering the
energy consumption and the system's efficiency.

Rogge et al. [13] generated a full transit network simulation with fast opportunity-based charging
and briefly discussed the impacts on the power grid. However, unlike our simulation model, they
have charging stations distributed across the entire transit network. Also, their electric buses
have been characterized into three main types: flash, overnight and opportunity with each type
representing a distinct profile as it relates to operational feasibility and grid impact. The authors
argue that the operation of different BEBs will vary significantly, as will the associated impacts
on the distribution power grid.

The existing literature is frequently focused on a specific aspect of electric bus design or
operation. The scope of the used models and solution techniques is limited, for example, in
terms of considering heterogeneous fleets, cost optimization, and infrastructure needs. Because
charging infrastructure is primarily viewed as an input to the problem, charger refilling is not
taken into account.

The current study fills this void by operational perspective and the convergence of delays to
understand associated costs while performing the comparison of types of bus fleets on the basis
of delays, total costs of operations and the stops, traffic and delays. To the best of the authors’
knowledge, there have not been studies dealing with simulations for different bus fleets based
on real-life driving cycles and the related sensitivity analyses have not been considered in
literature this far. Hence, we have created a unique simulation for the comparison of university
bus fleets that takes into account time varying demands and real routes all while also
incorporating recharging and refueling cycles at designated filling stations. Our model provides
decision makers with a comprehensive analysis of all aspects of a bus system in a given
geographical area.



3. Model
As mentioned in the introduction, the team plans to assist the decision makers in

comparing and choosing a particular type of system with the help of a simulation model. The
model proposed in the paper has a fixed simulation time of 12 hours for each replication. This is
to ensure that the team is able to capture a wide variety of demands and scenarios as it would
capture a typical cycle of demands seen in college towns, such as Ann Arbor. The team also
performed 30 replications to emulate a typical month. This would also inform the team on the
number of additional replications that may be needed for convergence of the model. The data
that is used as an input to the model is as described in the ‘Data’ section below, and contains
the travel times between stops for 4 different routes. For the purpose of the simulation, all of the
routes chosen start and end at the Central Campus Transit Center (CCTC) in Ann Arbor, which
is considered to be the ‘bus depot’.

Keeping in mind that the main task of any bus route is to ensure that its customers reach on
time to their respective destinations, the focus of the model is placed on understanding and
tracking the bus delays experienced in the system, and recording the extra replications needed
to run the model in order to ensure that there is a convergence of the delay value, with a
half-width of 1.5 minutes. The half-width was chosen based on what the team had experienced
when using the current bus system of Ann Arbor. We also track several other metrics, focusing
on both bus performance metrics as well as cost metrics, such as operational and fuel costs,
that would help city planners and other stakeholders better understand how they could use the
simulation system to make better decisions. The team has also conducted a sensitivity analysis
that displays the performance of the system under a variety of scenarios, mainly by varying 4
primary parameters - (1) the performance of the bus itself, which is the consumption of fuel
when the bus is running and when it is stationary, (2) the number of buses in the entire system,
and (3) the mean level of fuel that is present in each of the buses at the start of the day.

3.1. Data
We have acquired real time data from 4 bus routes on the University of Michigan Blue

Bus system. The data was collected by physically taking 5 samples on each route, data
available on Google Maps and gathered through General Transit Feed Specification from the
University of Michigan Logistics, Transportation and Parking. The routes are as follows:

1. Bursley Baits
2. Northwood
3. Diag to Diag Express
4. Oxford Shuttle

We calculated the interarrival times and the standard deviations for the interarrival times
for each stop on the route. The data is attached in the appendix. Since the team had only
collected 5 data points for each stop in each route, there may have been some bias introduced
in the calculations of the mean and standard variations for the inter-arrival/travel times between



the stops. For future methods and simulations, it would be helpful to take more readings to
ensure that the mean and variance are representative of the routes across all conditions.

3.2. Assumptions
For the purpose of simulating the model we have taken the following assumptions into

consideration and incorporated them in the model:

1. Passenger demand is translated as an integer demand related to the number of buses
required every hour for a specified route, which takes care of the total route demand.

2. All buses start and end at the same point, that is the routes are cyclic. For that purpose
we have taken CCTC as the Start depot and buses return back to the same depot at the
end of the route.

3. The maximum number of buses that can be deployed across all bus routes is 5. This is
based on the assumption that in real life, buses run every 12-15 minutes on a particular
route. Hence, we take the upper limit on the number of buses deployed on a route.

4. The fueling/recharging of the buses can only be done at the start and stop nodes and
not between the transit of a route. A bus cannot break the flow of a route in the sense
that it cannot go for a refuel or recharge in the middle of a route.

5. The buses cannot be deployed onto a route if the fuel level falls below a predetermined
value to ensure that the bus is capable of completing a route and is also a safety
measure that has been incorporated.

6. The model prioritizes the refueling or recharging of the buses over satisfying the
demand. We have also assumed a total of two refueling/recharging stations, with the
vehicle needing to travel to the stations in order to fill the tank/charge the battery.

7. The refueling/charging process for the different buses is also treated as a route, where
the route has a service time that would serve as the refueling or recharging time. The
route would also have a travel time, which, along with the service time, will give the total
amount of time taken for a bus to re-fuel or recharge.

8. We have assumed the hybrid vehicle to be fuel based, with the battery only assisting the
performance of the bus by reducing its fuel consumption.

9. There is no unmet demand, all demands from the routes have to be served. Since the
public transportation system is an essential part of Ann Arbor, we have assumed that no
demand goes un-met even if the demand is delayed.

10. There is no upper limit to the delay of meeting a demand, and demands are served
based on precedence of demand time. In continuation with the aforementioned point, we
have assumed that there should be no upper limit to the delay of an unmet demand and
any available bus will be deployed to satisfy the demands based on the precedence of
demands. That is, we follow the FIFO (First In First Out) rule to serve route demands.

11. Routes have been given precedence in bus deployment in ascending order. That is,
lower index routes eg. ‘route_1’ has higher precedence than ‘route_2’ for the same time
of demand, and so on.

12. Demands for the different routes are deterministic and follow a specific sequence. The
demand for the hour is generated through the function specified below, and the



individual demand for the hour is equally divided through the hour starting at t. For
example, if we have a demand of 2 for 1 hour at t = 0, this would imply that there is a
demand at t = 0 and the next demand would be at t = 30. The demand function used for
the model is as follows -

Demand = )𝑖𝑛𝑡(𝑎 * 𝑠𝑖𝑛( 𝑡+𝑐
𝑑 ) + 𝑏) +  1

where, a, b, c and d are constants, and t is the time of demand

13. Though the model is capable of taking in a distribution for the mean level of fuel, we
have taken the fuel level at the start of the day to be a constant, that is fixed the
standard deviation to be zero. A benefit of this is that it helps in the variance reduction
aspect of the model as well.

14. The performance of the vehicle is directly impacted by the fuel consumption of the bus
while running or at standstill. We assume that the running and idle/service consumption
goes higher for a lower performing bus, and are les for a better performing bus.

3.3. Model Structure
As discussed in the Model introduction, we have chosen 4 routes for our simulation and

we assume that the refueling/ charging cycle of a bus is also a route. The buses are individual
entities which can be deployed to any of the routes based on a certain criteria. Buses can only
be deployed to a route if they satisfy the minimum demand level for a route, and they are sent to
refuel if they get below the minimum limit for deployment. The routes have definite demands
throughout the day which are generated and kept in a list with their associated route. A route
demand is only satisfied if a bus is available for deployment to that route and will stay until a bus
is deployed. Buses can have 3 states: deployed, refueling and standstill - and these are updated
based on deployment, refueling or return from a route.

The first priority of the program is to update demand and send low-fuel buses to refuel.
Once these two things are checked the main switch cases take over and bus deployment to
routes takes precedence over the next bus event, which can be an arrival to a stop or the
service of a stop. The model runs till all the demands are met and all the buses have returned to
the depot. The flow of the simulation is depicted in the section ‘Flow Diagram’ which follows.

3.3.1. Variables
The variables used in the model are as follows:

1. System State (SS): (FN, DT, BND, BNR, BNS)
a. Fleet size - FN

b. Total current demand from routes - DT

c. Number of Deployed buses - BND

d. Number of Refuelling buses - BNR

e. Number of Standstill buses - BNS

2. Time variables:
a. T - Simulation end time
b. t - Current clock time



3. Route Variables:
a. Routes Table - RT
b. Route index - RI {route where deploying}
c. Demands Time - RT

d. Minimum fuel required for a route - RF

4. Bus Variables:
a. Bus index - BI {to reference bus in fleet}
b. Bus state - BS {Deployed:1, Refuel:0, Standstill:-1}
c. Next Event Time - BT

d. Next Event Type - BE {1: Arrival, 0: Service}
e. Fuel level - BF

f. Refuel characteristics - ‘recharge’ or ‘refill’
g. Fuel Consumption rates:

i. Travel consumption - FCT

ii. Service Consumption - FCS

iii. Refuel rate - FCR

We have performed sensitivity analysis by varying certain parameters in order to check
the effects on the delay times and costs associated with the fleets. The parameters we have
varied include

Table 1: Description of variable parameters for simulation

Travel consumption running_consumption

Service Consumption service_consumption

Number of Buses Deployed n_buses

Mean Fuel Level level_mean

There are fixed parameters which we have defined for analysing the associated costs of
running and maintaining the bus infrastructure. The following table provides insights on the
definition of these parameters and the variable used to define them in the simulation.

Table 2: Description of fixed parameters for simulation

Parameter Variable Name Gasoline Electric

Standard Deviation of initial tank level level_std 0

Refuel flag refuel refill recharge

Average Bus Speed (miles/hr) average_bus_speed 30

Number of refuelling stations refuel_stations 2

Conversion factor for tank capacity conversion_factor 100/tank_size

Hourly rate of bus driver ($) emp_rate 15

Fuel Rate ($/lt. or $/kWh) fuel_rate 0.882 0.1275

Delay rate (losses suffered per min) delay_rate 2.4

Maintenance Rate (dollar per min) maintain_rate 1.67 2.25

Number of routes n_routes 4



Simulation Time (T) SimTime 720

3.3.2. Flow Diagram
Following is a detailed flow diagram of the model which depicts how an event is updated

in the model and how decisions are made based on precedence/priority of a decision.

Figure 2: Flow diagram of simulation



3.3.3. Simulation Pseudo-Code

1. Initialize Model Parameters
a. Set time variables

i. t = 0
ii. T = 720

b. Route characteristics
i. Table (RT) containing data for generating route times
ii. DT = 0

c. Bus characteristics
i. Set fleet size - FN
ii. Charge/Fuel levels - BF
iii. Refuel characteristic - ‘recharge’ or ‘refill’

2. Generate demands for each route throughout the day
a. Route demands generated from predetermined distributions and stored as

demand time array RT, and demanding route index array RI

3. Start simulation with t = 0,
WHILE (t < T) OR (DT > 0):

Compulsory Step:
a. Check if any demand exists, update DT if there is demand, else set to 0.

Conditional Steps:
b. Find the bus BI with lowest fuel level and check,

IF BF < RF, fuel level is less than minimum required for deployment
i. Send bus BI to refuel, generate refuel route time from RT
ii. Update BT and BE based on generated refuel route
iii. BS = 0
iv. BNR = BNR + 1
v. BNS = BNS - 1

vi. Update SS

c. ELIF (t < T) AND (RT < BT) AND (DT > 0), upcoming event is route deployment
i. Bus index = BI
ii. BS = 1
iii. BND = BND + 1
iv. BNS = BNS - 1
v. t = RT

vi. Update SS
vii. DT = DT - 1

d. ELIF ((t < T) AND (BT < RT)) OR
((t < T) AND (RT < BT) AND (DT > 0) AND (No buses to deploy)),

upcoming event is a bus event, arrival or service
i. t = BT
ii. Updating fuel level:

● IF BE = 1, FC = FCT,



ELIF BE = 1, FC = FCS,
ELIF BE = 0 AND Route = ‘refuel’, FC = FCR,

● BF = BF - FC * (tnew - told)
iii. Update SS
iv. IF BE is the last arrival event (return to depot):

● Set, BT = infinity & BE = None
● BND = BND - 1
● BNS = BNS + 1

e. ELIF (t < T) and (DT = 0), all demands have been met within time-frame
i. Set t = T
ii. Update SS

f. ELIF (t > T) AND (RT < BT) AND (DT > 0), upcoming event is route deployment
i. Bus index = BI
ii. BS = 1
iii. BND = BND + 1
iv. BNS = BNS - 1
v. t = RT

vi. Update SS
vii. DT = DT - 1

g. ELIF ((t > T) AND (BT < RT)) OR
((t > T) AND (RT < BT) AND (DT > 0) AND (No buses to deploy)),

upcoming event is a bus event, arrival or service
i. t = BT
ii. Updating fuel level:

● IF BE = 1, FC = FCT,
ELIF BE = 1, FC = FCS,
ELIF BE = 0 AND Route = ‘refuel’, FC = FCR,

● BF = BF - FC * (tnew - told)
iii. Update SS
iv. IF BE is the last arrival event (return to depot):

● Set, BT = infinity & BE = None
● BND = BND - 1
● BNS = BNS + 1

h. ELIF (t > T) and (DT = 0), all demands have been met within time-frame
i. Set t = infinity
ii. Update SS

i. Update demand array

4. Save associated data for SS



4. Results
4.1. Base Case

We have run the simulation model for the base case scenarios for different types of fleets.
For the base case for Conventional Fuel Buses, we used a running consumption of 0.57 lt./min.
and a service consumption of 0.061 lt./min. with 10 buses and 60% fuel level. We found the total
number of delays to be 1204 and a total delay of 511.83 minutes and an average delay of 1.08
minutes for the 30 days of simulation. From the cost point of view, the average fuel cost was
$2076 and average delay costs were $12273 per day.

For the base case for Hybrid Buses, we used a running consumption of 0.355 lt./min. and a
service consumption of 0.055 lt./min. with 10 buses and 60% fuel level. We found the total
number of delays to be 1106 and a total delay of 3942.88 minutes and an average delay of 0.89
minutes for the 30 days of simulation. From the cost point of view, the average fuel cost was
$1365 and average delay costs were $9463 per day.

For the base case for Electric Buses, we used a running consumption of 0.300 kWh and a
service consumption of 0.050 kWh with 10 buses and 60% fuel level. We found the total number
of delays to be 1736 and a total delay of 212346.41 minutes and an average delay of 50.92
minutes for the 30 days of simulation. From the cost point of view, the average fuel cost was
$180 and average delay costs were $509631 per day.

We can see that the Fuel Buses have the least delay here and the Electric Buses have the least
fuel cost but highest Delay Cost.

4.2. Sensitivity Analysis

Table 3: Description of parameters altered for Sensitivity Analysis

Parameter Variable Name

Liquid Fuel Hybrid Electric

Min
Value

Base
Case

Max
Value

Min
Value

Base
Case

Max
Value

Min
Value

Base
Case

Max
Value

Running Consumption running_consumption 0.475 0.570 0.750 0.289 0.355 0.427 0.180 0.300 0.360

Idle/Service
Consumption service_consumption 0.037 0.061 0.068 0.033 0.055 0.061 0.010 0.050 0.070

Refuel Rate at station
(taken as negative
values) refuel_consumption -30 -30 -30 -30 -30 -30 -2 -2 -2

Tank Size/Capacity (lts.
of kWh) tank_size 150 150 150 150 150 150 240 240 240

Number of buses n_buses 8 10 12 8 10 12 8 10 12

Initial level of
tank/charge in % level_mean 40 60 80 40 60 80 40 60 80



4.2.1. Conventional buses
4.2.1.1. Performance Analysis

Keeping the vehicle number and mean level coherent with the base case, we
manipulate only the level of consumption for both running and service to see how the result of
the simulated bus system is going to react to this change. In this case, the total number of refills
required increases significantly as a response to the plummet in fuel efficiency. However, the
average delay of all events doesn’t change drastically while maintaining at a level of 1 min.

Table 4: Results of Sensitivity Analysis on Performance parameters for Conventional buses

Parameter changed:

Percentile 0 25 50 75 100

running_consumption 0.475 0.515 0.570 0.645 0.750

service_consumption 0.037 0.053 0.061 0.063 0.068

Half-width in minutes 0.897 0.934 0.899 0.984 1.052

Extra replications to be done for convergence 0 0 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 1094 1119 1204 1274 1315

Total delay in minutes 4582.37 4983.37 5113.83 5802.54 6475.35

Average of delay events in minutes 4.19 4.45 4.25 4.55 4.92

Average delay (all events) in minutes 1.02 1.09 1.08 1.22 1.31

Std. Deviation of delay (all events) in minutes 2.4 2.5 2.41 2.64 2.82

Maximum delay (all events) in minutes 18.05 17.89 15.18 18.25 20.21

Total number of deployments 4472 4554 4736 4769 4956

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 602 684 866 899 1086

Average running time for all buses per day in minutes 4158.05 4158.25 4164.16 4168.55 4169.7

Average service time for all buses per day in minutes 1505.93 1510.29 1507.46 1509.46 1506.47

Average refuel time for all buses per day in minutes 54.75 61.89 78.44 81.53 98.26

Average employee costs paid per day in dollars 1430 1433 1438 1440 1444

Average fuel costs paid per day in dollars 1449 1638 2076 2157 2600

Average delay costs paid per day in dollars 10998 11960 12273 13926 15541

Average maintenance costs paid per day in dollars 9550 9570 9603 9618 9643



Figure 3: Best and Worst case ECDF graph for the delays seen in consumption rate for conventional fuel

4.2.1.2. Mean Fuel Level

To find out the effect of start-off level of fuel for each bus on efficiency of the simulated
system, we alter the mean level of fuel while keeping the other variables constant to the base
case. Systems with the least and highest level of fuel slightly outperformed the systems ranging
in the middle in the sense of minimizing delay while less money and time expense are required
for a system with higher start-off fuel.

Table 5: Results of Sensitivity Analysis on Mean Fuel level for Conventional buses

Parameter changed:
Percentile 0 25 50 75 100

level_mean 40 50 60 70 80

Half-width in minutes 0.862 0.942 0.899 0.894 0.902

Extra replications to be done for convergence 0 0 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 1177 1221 1204 1162 1187

Total delay in minutes 4856.41 5433.35 5113.83 4822.37 4917.91

Average of delay events in minutes 4.13 4.45 4.25 4.15 4.14

Average delay (all events) in minutes 1.02 1.14 1.08 1.04 1.09

Std. Deviation of delay (all events) in minutes 2.31 2.52 2.41 2.4 2.42

Maximum delay (all events) in minutes 15.21 17.78 15.18 17.07 16.52

Total number of deployments 4768 4757 4736 4623 4499

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 898 887 866 753 629

Average running time for all buses per day in minutes 4147.13 4158.92 4164.16 4149.81 4155.65

Average service time for all buses per day in minutes 1513.43 1508.59 1507.46 1509.72 1508.22



Average refuel time for all buses per day in minutes 81.6 80.98 78.44 68.41 57.16

Average employee costs paid per day in dollars 1436 1437 1438 1432 1430

Average fuel costs paid per day in dollars 2159 2143 2076 1810 1512

Average delay costs paid per day in dollars 11655 13040 12273 11574 11803

Average maintenance costs paid per day in dollars 9589 9600 9603 9566 9554

Figure 4: Best and Worst case ECDF graph for the delays seen in mean fuel rate for conventional fuel

4.2.1.3. Number of buses

We experiment with the system having a range of 8 to 12 buses while keeping other
variables constant to the base case. We spot drastic changes in all delay associated result
parameters by either adding or subtracting bus from the system.

Table 6: Results of Sensitivity Analysis on Number of buses for Conventional buses

Parameter changed:
Percentile 0 25 50 75 100

n_buses 8 9 10 11 12

Half-width in minutes 10.395 3.977 0.899 0.267 0.08

Extra replications to be done for convergence 1412 182 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 2824 2387 1204 321 52

Total delay in minutes 116799.65 41017.29 5113.83 688.08 78.87

Average of delay events in minutes 41.36 17.18 4.25 2.14 1.52



Average delay (all events) in minutes 25.03 8.76 1.08 0.15 0.02

Std. Deviation of delay (all events) in minutes 27.84 10.65 2.41 0.72 0.21

Maximum delay (all events) in minutes 91.26 39.87 15.18 7.96 6.37

Total number of deployments 4667 4680 4736 4634 4579

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 797 810 866 764 709

Average running time for all buses per day in minutes 4169.43 4161.13 4164.16 4159.99 4164.8

Average service time for all buses per day in minutes 1499.63 1511.74 1507.46 1503 1500.97

Average refuel time for all buses per day in minutes 72.21 73.51 78.44 69.23 64.47

Average employee costs paid per day in dollars 1435 1437 1438 1433 1433

Average fuel costs paid per day in dollars 1911 1945 2076 1832 1706

Average delay costs paid per day in dollars 280319 98441 12273 1651 189

Average maintenance costs paid per day in dollars 9588 9596 9603 9573 9570

Figure 5: Best and Worst case ECDF graph for the delays seen in number of buses for conventional fuel

4.2.2. Hybrid buses
4.2.2.1. Performance Analysis

In this analysis we have varied the fuel consumption levels and observed the effects on
delays and fuel, employee, and delay costs. We can observe a general decrease in delay levels
and increase in fuel costs as we increase the consumption.



Table 7: Results of Sensitivity Analysis on Performance parameters for Hybrid buses

Parameter changed:

Percentile 0 25 50 75 100

running_consumption 0.289 0.315 0.355 0.382 0.427

service_consumption 0.033 0.048 0.055 0.059 0.061

Half-width in minutes 0.896 0.853 0.769 0.715 0.802

Extra replications to be done for convergence 0 0 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 1164 1162 1106 1060 1115

Total delay in minutes 4828.04 4531.35 3942.88 3642.26 4249.42

Average of delay events in minutes 4.15 3.9 3.56 3.44 3.81

Average delay (all events) in minutes 1.16 1.07 0.89 0.82 0.95

Std. Deviation of delay (all events) in minutes 2.4 2.28 2.06 1.92 2.19

Maximum delay (all events) in minutes 14.44 16.18 16.2 14.61 15

Total number of deployments 4173 4248 4436 4466 4470

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 303 378 566 596 600

Average running time for all buses per day in minutes 4155.11 4158.06 4150.57 4146.46 4158.5

Average service time for all buses per day in minutes 1508.71 1506.27 1508.59 1500.71 1511.73

Average refuel time for all buses per day in minutes 27.4 34.47 51.57 54.03 54.69

Average employee costs paid per day in dollars 1423 1425 1428 1425 1431

Average fuel costs paid per day in dollars 725 912 1365 1430 1447

Average delay costs paid per day in dollars 11587 10875 9463 8741 10199

Average maintenance costs paid per day in dollars 9504 9517 9537 9521 9561

Figure 6: Best and Worst case ECDF graph for the delays seen in consumption rate for hybrid fuel



4.2.2.2. Mean Fuel Level

In this analysis we have varied the mean fuel levels and observed the effects on delays
and fuel, employee, and delay costs. We can observe a general decrease in delay levels as we
move towards the base case and a significant decrease in average fuel costs as we increase
the mean fuel levels.

Table 8: Results of Sensitivity Analysis on Mean Fuel level for Hybrid buses

Parameter changed:
Percentile 0 25 50 75 100

level_mean 40 50 60 70 80

Half-width in minutes 0.832 0.782 0.769 0.875 min 0.936

Extra replications to be done for convergence 0 0 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 1114 1058 1106 1171 1147

Total delay in minutes 4308.45 3988.12 3942.88 4623.8 4900.85

Average of delay events in minutes 3.87 3.77 3.56 3.95 4.27

Average delay (all events) in minutes 0.96 0.89 0.89 1.08 1.18

Std. Deviation of delay (all events) in minutes 2.23 2.1 2.06 2.34 2.51

Maximum delay (all events) in minutes 15.73 13.52 16.2 15.32 16.48

Total number of deployments 4469 4470 4436 4270 4171

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 599 600 566 400 301

Average running time for all buses per day in minutes 4157.55 4150.07 4150.57 4148.66 4143.51

Average service time for all buses per day in minutes 1517.87 1506.37 1508.59 1506.09 1504.54

Average refuel time for all buses per day in minutes 54.43 54.5 51.57 36.56 27.28

Average employee costs paid per day in dollars 1432 1428 1428 1423 1419

Average fuel costs paid per day in dollars 1440 1442 1365 967 722

Average delay costs paid per day in dollars 10340 9571 9463 11097 11762

Average maintenance costs paid per day in dollars 9569 9537 9537 9504 9478



Figure 7: Best and Worst case ECDF graph for the delays seen in mean fuel level for hybrid fuel

4.2.2.3. Number of buses

In this analysis we have varied the number of buses in the system and observed the
effects on delays and fuel, employee, and delay costs. We can observe a significant decrease in
delay levels and delay costs and an increase in fuel costs as we move towards the base case.

Table 9: Results of Sensitivity Analysis on Number of buses for Hybrid buses

Parameter changed:
Percentile 0 25 50 75 100

n_buses 8 9 10 11 12

Half-width in minutes 10.097 3.601 0.769 0.212 0.049

Extra replications to be done for convergence 1331 144 0 0 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 2814 2467 1106 251 39

Total delay in minutes 113251.21 36778.15 3942.88 473.55 40.99

Average of delay events in minutes 40.25 14.91 3.56 1.89 1.05

Average delay (all events) in minutes 26.04 8.34 0.89 0.11 0.01

Std. Deviation of delay (all events) in minutes 27.04 9.64 2.06 0.57 0.13

Maximum delay (all events) in minutes 87.25 40.49 16.2 8.03 3.32

Total number of deployments 4350 4409 4436 4338 4230

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 480 539 566 468 360

Average running time for all buses per day in minutes 4150.22 4140.37 4150.57 4150.51 4151.29

Average service time for all buses per day in minutes 1511.33 1508.23 1508.59 1509.62 1518.01

Average refuel time for all buses per day in minutes 43.43 48.92 51.57 42.39 32.61

Average employee costs paid per day in dollars 1426 1424 1428 1426 1425

Average fuel costs paid per day in dollars 1149 1294 1365 1123 864

Average delay costs paid per day in dollars 271803 88268 9463 1137 98

Average maintenance costs paid per day in dollars 9527 9515 9537 9523 9522



Figure 8: Best and Worst case ECDF graph for the delays seen in number of buses for hybrid fuel

4.2.3. Electric  buses
4.2.3.1. Performance Analysis

Below are the simulation results of electric buses undergoing different combinations of
running and servicing consumptions. In general, the electric buses system doesn’t perform well
under all conditions given that the average delay in all events is over 40 minutes for every
circumstance that have been addressed in this chart which is extremely inefficient given the
same parameters being under 2 mins for other two vehicles.

Table 10: Results of Sensitivity Analysis on Performance parameters for Electric buses

Parameter changed:

Percentile 0 25 50 75 100

running_consumption 0.240 0.270 0.300 0.330 0.360

service_consumption 0.030 0.040 0.050 0.060 0.070

Half-width in minutes 17.479 23.587 28.328 29.955 31.788

Extra replications to be done for convergence 5746 7389 10671 11935 13445

Total number of replications (days) 30 30 30 30 30

Total number of delays 1444 1652 1736 1882 1959

Total delay in minutes 82373.67 145522.22 212346.41 253690.62 297531.51

Average of delay events in minutes 57.05 88.09 122.32 134.8 151.88

Average delay (all events) in minutes 20.04 34.9 50.92 60.84 71.35

Std. Deviation of delay (all events) in minutes 46.81 63.17 75.86 80.22 85.13

Maximum delay (all events) in minutes 178.04 190.33 201.08 202.19 206.11

Total number of deployments 4110 4170 4170 4170 4170

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 240 300 300 300 300



Average running time for all buses per day in minutes 4148.79 4141.91 4142.01 4158.73 4154.26

Average service time for all buses per day in minutes 1503.78 1513.49 1507.85 1502.04 1507.58

Average refuel time for all buses per day in minutes 564.46 705.13 704.57 704.95 705.23

Average employee costs paid per day in dollars 1554 1590 1589 1591 1592

Average fuel costs paid per day in dollars 144 180 180 180 180

Average delay costs paid per day in dollars 197697 349253 509631 608857 714076

Average maintenance costs paid per day in dollars 13988 14311 14298 14323 14326

Figure 9: Best and Worst case ECDF graph for the delays seen in consumption rate for electric charge

4.2.3.2. Mean Fuel Level

Start-off battery level is crucial for the performance of electric buses since the charging
time is extensively larger than the refuel time for liquid fuel buses. Here below in the chart, we
change the initial battery level from 40 percent to 80 percent. The resulting parameters are even
worse for situations where we are starting off with less than 80 percent of battery level for each
bus, but the performance of the system is optimized suddenly when we change the level_mean
to 80 percent. We’ll have our explanation on this addressed in the next section.

Table 11: Results of Sensitivity Analysis on Mean Charge level for Electric buses

Parameter changed:
Percentile 0 25 50 75 100

level_mean 40 50 60 70 80

Half-width in minutes 28.529 32.059 28.328 16.515 0.681

Extra replications to be done for convergence 10824 13675 10671 3608 0

Total number of replications (days) 30 30 30 30 30

Total number of delays 2699 2118 1736 1454 924

Total delay in minutes 416693.71 337435.94 212346.41 74883.29 2970.28

Average of delay events in minutes 154.39 159.32 122.32 51.5 3.21

Average delay (all events) in minutes 99.93 80.94 50.92 18.22 0.77



Std. Deviation of delay (all events) in minutes 76.4 85.86 75.86 44.23 1.82

Maximum delay (all events) in minutes 186.49 211.15 201.08 164.59 11.91

Total number of deployments 4170 4169 4170 4110 3875

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 300 299 300 240 5

Average running time for all buses per day in minutes 4140.04 4139.83 4142.01 4142.53 4143.11

Average service time for all buses per day in minutes 1506.44 1506.19 1507.85 1510.81 1504.51

Average refuel time for all buses per day in minutes 704.21 703.71 704.57 565.93 11.47

Average employee costs paid per day in dollars 1588 1587 1589 1555 1415

Average fuel costs paid per day in dollars 180 179 180 144 3

Average delay costs paid per day in dollars 1000065 809846 509631 179720 7129

Average maintenance costs paid per day in dollars 14289 14287 14298 13993 12733

Figure 10: Best and Worst case ECDF graph for the delays seen in mean fuel level for electric charge

4.2.3.3. Number of buses

Unlike what is the case for liquid fuel buses and hybrid buses, the result from electrical
bus simulation doesn’t respond as much if we add or subtract additional vehicles to the fleet.
But still, the delay related results are improving which might imply that more electric buses are
needed so as to make the electric bus system favorable among these three bus transit systems.



Table 11: Results of Sensitivity Analysis on Number of buses for Electric buses

Parameter changed:
Percentile 0 25 50 75 100

n_buses 8 9 10 11 12

Half-width in minutes 36.639 32.05 28.328 23.367 19

Extra replications to be done for convergence 17870 13667 10671 7431 3832

Total number of replications (days) 30 30 30 30 30

Total number of delays 2741 2339 1736 1169 792

Total delay in minutes 374387.64 281174.29 212346.41 145497.79 97656.29

Average of delay events in minutes 136.59 120.21 122.32 124.46 123.3

Average delay (all events) in minutes 91.09 67.92 50.92 34.88 23.52

Std. Deviation of delay (all events) in minutes 98.12 85.83 75.86 62.58 50.81

Maximum delay (all events) in minutes 240.78 211.39 201.08 178.61 167.81

Total number of deployments 4110 4140 4170 4171 4152

Total number of route deployments 3870 3870 3870 3870 3870

Total number of refills deployments 240 270 300 301 282

Average running time for all buses per day in minutes 4141.19 4148.19 4142.01 4144 4150.74

Average service time for all buses per day in minutes 1505.68 1508.45 1507.85 1506.03 1512.84

Average refuel time for all buses per day in minutes 563.89 635.15 704.57 707.71 663.06

Average employee costs paid per day in dollars 1553 1573 1589 1589 1582

Average fuel costs paid per day in dollars 144 162 180 180 169

Average delay costs paid per day in dollars 898530 674818 509631 349195 234375

Average maintenance costs paid per day in dollars 13974 14157 14298 14305 14235

Figure 11: Best and Worst case ECDF graph for the delays seen in number of buses for electric charge



4.3. Variance Reduction
For variance reduction, we have used the concept of Common Random Numbers (CRN)

to compare the three different alternatives, i.e. Conventional, Hybrid and Electrical buses. We
have taken one base case for each alternative and using that base case we do a comparison
study on the other two cases. This is achieved by storing all interarrival and service times for the
base cases and injecting the same interarrival and service times for the associated bus
deployments in the other two cases. The results are discussed in the following section.

4.4. Comparison of Alternatives
As mentioned in section 5.3, we have simulated the alternatives with variance reduction

to compare the three alternatives on the same grounds. The inherent difference, which is the
difference in the fuel systems for the buses, in these alternatives produce different results, which
is evident from the difference in mean and variance of delays as discussed in the previous
section. The table below shows the results obtained from the simulations done with the three
base cases and their associated variance reduced alternatives.



Table 12: Results of Variance Reduction on Comparison of Alternatives

Parameter changed:
Base Case: Conventional Base Case: Hybrid Base Case: Electric

Conventional Hybrid Electric Conventional Hybrid Electric Conventional Hybrid Electric

n_buses 10 10 10 10 10 10 10 10 10

level_mean 60 60 60 60 60 60 60 60 60

running_consumption 0.570 0.355 0.300 0.570 0.355 0.300 0.570 0.355 0.300

service_consumption 0.061 0.055 0.050 0.061 0.055 0.050 0.061 0.055 0.050

Half-width in minutes 0.899 0.724 28.367 0.862 0.684 27.874 2.59 2.385 28.328

Extra replications to be done for convergence 0 0 10701 0 0 10331 61 47 10671

Total number of replications (days) 30 30 30 30 30 30 30 30 30

Total number of delays 1204 1049 1751 1165 1063 1753 1793 1724 1736

Total delay in minutes 5113.83 3601.55 212197.9 4917.68 3495.74 206956.04 18913.74 16125.05 212346.41

Average of delay events in minutes 4.25 3.43 121.19 4.22 3.29 118.06 10.55 9.35 122.32

Average delay (all events) in minutes 1.08 0.81 50.89 1.04 0.79 49.63 4.09 3.7 50.92

Std. Deviation of delay (all events) in minutes 2.41 1.94 75.97 2.31 1.83 74.65 6.94 6.39 75.86

Maximum delay (all events) in minutes 15.18 14.45 197.92 15.38 13.71 197.75 34.88 31.99 201.08

Total number of deployments 4736 4441 4170 4733 4445 4170 4629 4357 4170

Total number of route deployments 3870 3870 3870 3870 3870 3870 3870 3870 3870

Total number of refills deployments 866 571 300 863 575 300 759 487 300

Average running time for all buses per day in
minutes

4164 4157 4149 4161 4154 4147
3860

3853 4142

Average service time for all buses per day in
minutes

1507 1507 1507 1506 1506 1506
2096

2096 1508

Average refuel time for all buses per day in
minutes

78 52 705 78 52 706
69

44 705

Average employee costs paid per day in dollars 1438 1429 1590 1436 1428 1590 1506 1498 1589

Average fuel costs paid per day in dollars 2076 1385 180 2072 1375 199 1821 1171 180

Average delay costs paid per day in dollars 12273 8644 509275 11802 8390 496694 45393 38700 509631

Average maintenance costs paid per day in
dollars

9603 9546 14314 9595 9539 12852
10061

10009 14298



5. Discussion of results/recommendations
5.1. Sensitivity Analysis on Conventional Buses

Once the team was able to model, verify and validate the base cases with the help of a
structured walkthrough, we switched to analyzing all three different systems under various
scenarios to understand how the model would perform and if it would pass the intuition test, i.e.,
if the model would behave the way we expect it to when we increase the parameters that serve
as inputs. The main parameters under consideration are the running consumption, which is the
amount of fuel used by a bus when moving, the service consumption, which is the amount of
fuel used when the bus is stationary, the number of buses in the system as a whole, and finally
the mean level of fuel/charge that is present in the bus at the start of the day. A point to note
about the consumption levels is in practice, we usually see a correlation between an increase in
running consumption and idle consumption as this is usually due to factors such as a decrease
in engine performance or a degradation in some other system which affects the bus as a whole
and not just any one system in isolation.

For conventional fuel buses, we see that a systematic increase in the running and idle
consumption levels translates to a steady increase in metrics such as the number of delays
which increases from 4500 minutes (best case scenario in terms of fuel consumption) to 6475
minutes (worst scenario for fuel consumption), the total time of delays, and the average delays.
This result does make sense intuitively, as we expect an increase in the fuel consumption rates
to lead to more refueling, which in turn could lead to more delays as the simulation prioritizes
the refueling cycle as opposed to satisfying demand. In terms of costs, while there is an
increase in costs as the bus performance worsens, it is not as significant a change as is with the
delay time.

The mean level of fuel in each of the buses at the start of the day had a range from 40%
to 80% in increments of 10%. Interestingly, changing this parameter did not yield any significant
trends, as the total number of delays and the total delays in minutes remained relatively
constant.

The final parameter analyzed was the number of buses present in the system, which
was varied from 8 buses to 12 buses. As expected, the number of buses had a huge impact on
the total number of delays (ranging from 2824 for 8 buses to 50 delays for 12 buses) and on the
total time of delays in minutes. This also affected the costs associated with delays as expected,
but the fuel and employee costs interestingly did not see any significant changes. The maximum
delay did also see a significant improvement, reducing by almost 95% in the process.



5.2. Sensitivity Analysis on Hybrid Buses
We need to examine the robustness of our model and the extent to which results are

affected by changes in methods, models, values of unmeasured variables, or assumptions.
Some of the changes we have considered are changes in consumption levels, number of buses
and mean level.

For hybrid buses, when we increased the consumption levels, there was a decrease in
the delays caused on the routes from a total delay of 4828.04 minutes for 0.289 lpm
consumption to a delay of 3642.26 for 0.382 lpm consumption. We can observe a monotonic
decrease in all delay related parameters with an increase in consumption levels. However, as
expected the fuel and maintenance costs increase with an increase in fuel consumption.
Concerning the mean fuel level to start with, we have the lowest delay at 50% gas which is our
base case with an increasing delay levels as the gas level changes.However, the average fuel
costs linearly decreased with an increased fuel level which is expected as we would need less
refuels when there is a high initial fuel level.

Next we perform sensitivity analysis by varying the number of buses in the system.
There is a significant decrease in delay from 113251 minutes to 0.99 minutes as we increase
the number of buses 8 to 12 and this would also translate to a decrease in delay costs. We can
clearly see that 12 buses is optimal for our system. However, we observe that the average fuel
costs increase as buses increase to 10 and decrease thereafter, which can be linked to the
initial mean fuel level present in the buses and the distance they have to travel.

5.3. Sensitivity Analysis on Electric Buses
By analyzing the performance and cost associated result of the electric bus with different

set of running consumption and service consumption parameters ranging from 0.24 /0.03 kwh
per min to 0.36 / 007 kwh per min, we could spot a monotonic trend of increasing in all of the
delay affiliated parameters such as total number of delay, average length of delay and also
average delay costs paid per day in dollar by increasing the running and service consumption
parameter. Besides this trend that we’ve spotted, we should notice that the average delay of all
events is over 40 minutes for every circumstance that has been addressed in this chart which is
extremely inefficient given the same parameters being under 10 mins for the other two vehicles
type.

The resulting parameters are even worse for situations where we are starting off with
less than 80 percent of battery level for each bus, but the performance of the system is
optimized suddenly when we change the level_mean to 80 percent. When we started the
electric bus with 80 percent of battery capacity, we ended up with a simulation performance
similar to the base case of other two types of buses with an average delay around 1 min.
However, different between the two systems, the simulation result shows that electric buses
merely need a recharge during their shift of the day as the recharge deployment counts and
dollar spent on recharge is almost zero for both cases.



5.4. Comparison Study

Considering only the base case scenario for all three types of buses, There is an obvious
distinction with respect to the performance between electric bus and fuel & hybrid bus given the
strength of fuel and hybrid buses being able to be refilled in a rather short time period. The
average fuel time for fuel-intrinsic buses to be reconsidered as deployable is around 50 minutes
whereas the same parameter is 10 times larger for electric buses.

The total number of delays doesn’t vary much for each type of bus. However, the
average of delay events for electrical vehicles is 122 minutes which converts to 2 hours. This
means that for all the delay that happened for the electrical bus system, the average wait time
for the passengers to get on the bus is 2 hours. This is an extremely long time especially
considering the same outcome being 4,25 and 3.43 accordingly which are reasonable wait time
for a transit system. This parameter will deteriorate the efficiency of the electric bus system
under the base case assumption. As addressed before in the sensitivity analysis, this issue
could be solved by allowing more electric storage beforehand or by generously increasing the
amount of electrical buses that are dispatch-able.

By only comparing the result statistics between fuel bus and hybrid bus, we can
conclude that hybrid bus outperforms liquid fuel bus because of the less delay incidents,
average delay time and also the less cost indexes for running servicing and refueling. However,
the difference between these two systems are, as we’ve said before, indistinguishable and can
be easily reverted given minor changes in the base case.

6. Summary and Conclusions
With the ever increasing push from communities and governments to reduce reliance on

the burning of fossil fuels, exploring alternative sources of energy for daily transportation has
increasingly become a topic of interest across the world. One area where alternative sources of
fuels and technologies can be used in the movement of people with the help of buses within
cities and regions. This report aims to address this by providing city planners and other
stakeholders a way to compare and contrast different technologies and fuel sources and to
ultimately help inform and aid them in their decision making processes. As a part of the project,
the team has worked together to model a bus system in the city of Ann Arbor that contains a
subset of the routes found in real life. The team was able to successfully incorporate several
features such as time varying demand, bus performance, real life driving cycles, travel times,
service times and recharging and refueling cycles in order to provide a comprehensive solution
to aid the different stakeholders. While the focus of the simulation was on tracking delays
throughout the system across various scenarios and ensuring that there is convergence on the



delay value with a chosen half-width of 1.5 minutes, cost and performance metrics were also
measured to provide a holistic review of the entire system. To further develop the model, more
attention could be given to data collection for the travel times between the different stops as well
as in researching more efficient recharging and refueling methods which would help reduce the
overall delay found in the system. Efforts could also be focused on developing better
technologies that would aid in faster charging of electric vehicles, which in turn would address
the delays caused in the purely electric system. Finally, understanding the needs and wants of
the people in the community could go a long way in ensuring that they remain satisfied and
incentivised to step away from personal, conventional fuel vehicles, which would help the
government meet their goals in reducing their dependence on fossil fuels.
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Appendix
Bursley Baits Route

Route Interarrival STD

CCTC 0 0

Stockwell Hall 1.31 1.04

Cardiovascular Center 0.69 0.65

Glen Catherine 3 0.48

Mitchell Field 5.11 0.47

Pierpont Commons 1.69 0.36

Bursley 2.31 0.70

Baits II 1 0.62

Baits 1 1.2 0.21

Baits II 1.2 0.19

Bursley 1 0.61

Pierpont Commons 2.31 0.92

Mitchell Field 1.69 0.36

Glen/Catherine 5.11 0.47

Rackham 1.79 0.48

CCTC 2.13 1.09

Northwood Route
CCTC 0 0.00

Glen + Catherine 1.3 0.88

Fuller + Cedar Bend 2.7 0.85

Pierpont Commons Murfin 2.78 0.30

Northwood III Outbound 1.22 0.38

Northwood I Outbound 0.3 0.12

Cram Circle Outbound 0.3 0.16

Northwood III Outbound 1.3 0.19

Fire Station Outbound 2.1 0.34

Plymouth Road Crosswalk 2 0.79

Northwood IV 0.7 0.27

Northwood Community Center 1.3 0.29

Hayward.Hubbard Outbound 1 0.61

NCAC Hubbard Outbound 1 0.41

Northwood V(1) 0.49 0.27



Northwood V(2) 1.51 0.17

NCAC Hubbard Inbound 0.49 0.32

Hubbard + Huron Parkway 1 0.23

Hayward/Hubbard Inbound 1 0.35

FXB Inbound 3.81 0.56

Cooley Lab Inbound 2.19 0.94

Pierpont Commons 1.61 1.76

Fuller Road at Mitchell Field 4.39 0.70

Zina Pitcher 4.42 1.37

Lloyd Observatory 1.58 0.41

Stockwell Hall Inbound 1.5 0.84

CCTC 1.5 0.92

Diag to Diag Route

Geddes + CCTC 0 0

East Quad Church 3.76 0.57

Henderson House 1.8 0.73

Oxford Housing 3.84 0.27

Trotter House 1.75 0.45

CCTC 2.72 0.42

Power Center 1.42 0.40

Glen/Catherine 2.37 0.45

Fuller+ Cedar 4.22 0.40

Ford Presidential Library 1.28 0.13

Cooley Lab Inbound 0.46 0.24

Pierpont Commons 0.5 0.02

Fuller Road at Mitchell Field 2.76 0.84

Glen/Catherine Inbound 3.12 0.54

Rackham Building 1.3 0.36

Geddes + CCTC 1.42 0.34



Oxford Shuttle

Geddes + CCTC 0 0.00

East Quad 1.85 0.57

Henderson House 1.01 0.73

Oxford House 2.13 0.27

Trotter House 1.67 0.45

Shapiro Library 2.75 0.51

S University + State 0.98 0.32

State + SU 0.4 0.86

Michigan League 2.53 0.71

CCTC 1.67 0.24



System State
SS = (n_buses, curr_dem, buses_deployed, buses_recharge, buses_standstill)

Monitoring System State

Time System
State Bus Charge Route State Event Process

Time
Demand-
Current

Demand-
Actual

Demand-
Charge

0 (1,1,1,0,0) 1 50 '1' 1 0 0 0 0 15

10.3 (1,0,1,0,0) 1 48 '1' 1 1 10.3 - - -

12.3 (1,0,1,0,0) 1 47.5 '1' 1 0 2.0 - - -

Monitoring Bus Deployments

Time Demand-Current Demand-Actual Demand-Charge Bus Charge Route Event Array Time Array

0 0 0 15 1 50 '1' [1, 0, 1] [12, 35, 41]

40 41 40 20 1 35 '2' [1, 0, 1] [48, 50, 55]

In [1]: import pandas as pd 
import numpy as np 
import numpy.random as random 
from route_functions import * 
import matplotlib.pyplot as plt 
import scipy.stats as st 
import statsmodels.api as sm  
 
# to ignore warning on calculations 
import warnings 
warnings.filterwarnings("ignore") 

In [2]: path = r"C:\Users\krishrao\Desktop\Laptop Backup\Krishna\Fall'21\IOE 574\Term Project\IOE574_Project\da

In [3]: # intializing route table 
routes = pd.read_excel('Model_Parameters.xlsx', 'Routes') 
 
n_buses = 10                            # number of buses 
 
# For liquid fuel buses 
running_consumption = 0.355             # fuel(lts.)/kWh per minute 
service_consumption = 0.055             # fuel(lts.)/kWh per minute 
refuel_consumption = -30                # -30 for fuel, -2 for electric 
tank_size = 150                         # 150 lts. / 240 kWh  
level_mean = 80                         # normal distribution.. can be changed 
level_std = 0                           # currently constant at level_mean 
refuel = 'refill'                       # 'refill', recharge' 
fuel_rate = 0.882                       # dollar 0.882 per lt. / 0.1275 per kWhr 
maintain_rate = 1.67                    # dollar per min 1.67 for fuel, 2.25 for elctric 
 
''' 
# For electric buses 
running_consumption = 0.30              # fuel(lts.)/kWh per minute 
service_consumption = 0.05              # fuel(lts.)/kWh per minute 
refuel_consumption = -2                 # -30 for fuel, -2 for electric 
tank_size = 240                         # 150 lts. / 240 kWh  
level_mean = 50                         # normal distribution.. can be changed 
level_std = 0                           # currently constant at level_mean 
refuel = 'recharge'                     # 'refill', recharge' 
fuel_rate = 0.1275                      # dollar 0.882 per lt. / 0.1275 per kWhr 
maintain_rate = 2.25                    # dollar per min 1.67 for fuel, 2.25 for elctric 
''' 
 
#----- 



----- 
Running buses on Day  1 
----- 
Running buses on Day  2 
----- 
Running buses on Day  3 
----- 
Running buses on Day  4 
Stuck in a loop! 
Updating next bus event 
 Time - 240.0 
 Time Check - 240.0 
 Demands - [255.0, 255.0, 270.0, 270.0, 270.0, 285.0] [255.0, 255.0, 270.0, 270.0, 270.0, 285.0] 
['1', '3', '1', '2', '3', '1'] [25.0, 25.0, 25.0, 25.0, 25.0, 25.0] 
 dct_flag - 0 
----- 
Running buses on Day  5 
----- 
Running buses on Day  6 
Stuck in a loop! 
Updating next bus event 
 Time - 660.0 
 Time Check - 660.0 
 Demands - [675.0, 680.0, 680.0, 690.0, 700.0, 700.0] [675.0, 680.0, 680.0, 690.0, 700.0, 700.0] 
['1', '2', '4', '1', '2', '4'] [25.0, 25.0, 25.0, 25.0, 25.0, 25.0] 
 dct_flag - 0 
----- 
Running buses on Day  7 
----- 
Running buses on Day  8 
----- 
Running buses on Day  9 

# customizable parameters 
#average_bus_speed = 30 miles /hr 
refuel_stations = 2 
conversion_factor = 100/tank_size
 
# cost rates 
emp_rate = 15                           # per hour basis 
delay_rate = 2.4                        # dollar per min ** reason 
 
 
# setting up initial values for simulation 
n_routes = 4                            # number of routes 
SimTime = 720 
 
SS_cols = ['Time', 'System_State', 'Bus', 'Charge', 'Route',  
           'State', 'Event', 'Process_Time', 'Demand_Current',  
           'Demand_Actual', 'Demand_Charge'] 
BD_cols = ['Time', 'Demand_Current', 'Demand_Actual', 'Demand_Charge',  
           'Bus', 'Charge', 'Route', 'Event_Array', 'Time_Array'] 

In [4]: replicates = 30 
ss_table = pd.DataFrame(columns=SS_cols+['Replication']) 
bd_table = pd.DataFrame(columns=BD_cols+['Replication']) 
 
for i in range(replicates): 
    print('-----\nRunning buses on Day ', i+1)                     # intializing required variabes 
    buses = [bus(level_mean, level_std) for i in range(n_buses)]   # fleet of buses 
    t = 0                                                          # start time of simulation 
    T = SimTime 
    demand_at, demand_r, demand_c = gen_demands(n_routes, T)       # updating demands 
    demand_ct = demand_at.copy()                                   # demand current time and demand act
    dct_flag = 0                                                   # demand at current time 
    ss_tab, bd_tab = fleet_simulation(t, T, routes, buses, refuel, running_consumption,  
                                      service_consumption, refuel_stations, refuel_consumption, convers
                                      demand_at, demand_ct, demand_r, demand_c, dct_flag, SS_cols, BD_c
    ss_tab['Replication'] = i+1 
    bd_tab['Replication'] = i+1 
    ss_table = ss_table.append(ss_tab, ignore_index=True) 
    bd_table = bd_table.append(bd_tab, ignore_index=True) 



----- 
Running buses on Day  10 
----- 
Running buses on Day  11 
----- 
Running buses on Day  12 
----- 
Running buses on Day  13 
Stuck in a loop! 
Updating next bus event 
 Time - 420.0 
 Time Check - 420.0 
 Demands - [435.0, 435.0, 440.0, 440.0, 450.0, 450.0] [435.0, 435.0, 440.0, 440.0, 450.0, 450.0] 
['1', '3', '2', '4', '1', '3'] [25.0, 25.0, 25.0, 25.0, 25.0, 25.0] 
 dct_flag - 0 
----- 
Running buses on Day  14 
----- 
Running buses on Day  15 
----- 
Running buses on Day  16 
----- 
Running buses on Day  17 
----- 
Running buses on Day  18 
----- 
Running buses on Day  19 
----- 
Running buses on Day  20 
----- 
Running buses on Day  21 
----- 
Running buses on Day  22 
----- 
Running buses on Day  23 
----- 
Running buses on Day  24 
----- 
Running buses on Day  25 
----- 
Running buses on Day  26 
----- 
Running buses on Day  27 
----- 
Running buses on Day  28 
----- 
Running buses on Day  29 
----- 
Running buses on Day  30 

ss_table

bd_table

Converging the model on delays
In [5]: # delay analysis on deployments 

num_delay = sum(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual'])>0) 
total_delay = sum(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']))) 
avg_delay = round(np.mean(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']
std_delay = round(np.std(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual'])
max_delay = max(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']))) 
 
# cost analysis 
run_time, ser_time, ref_time, emp_cost, fuel_cost, delay_cost = cost_analysis(n_buses, replicates, refu
                                                                              bd_table, emp_rate, fuel_
                                                                              refuel_consumption) 
 
# convergence on delays 
beta = 1.5 
alpha = 0.05 



--- 

Model Analysis

ci_n = 1-alpha/2     
n_beta = (st.t.ppf(ci_n, df=replicates-1)*std_delay 
          /np.sqrt(replicates)) 
''' 
print('---\nCurrent half-width - ', round(n_beta, 3), 'min') 
print('Current replications -', replicates) 
print('Number of bus deployments -', bd_table.shape[0]) 
 
while n_beta > beta: 
    s2_n =  (std_delay)**2 
    t = st.t.ppf(ci_n, df=replicates-1) 
    n_rep = int((t*np.sqrt(s2_n)/beta)**2) + 1 
    n_rep = int(n_rep*replicates/replicates) + 1 
    print('The extra replications to be done - ', n_rep-replicates) 
     
    for h in range(replicates, n_rep): 
        print('-----\nRunning buses on Day ', h+1)                      # intializing required variabes
        buses = [bus(level_mean, level_std) for i in range(n_buses)]   # fleet of buses 
        t = 0                                                          # start time of simulation 
        T = SimTime 
        demand_at, demand_r, demand_c = gen_demands(n_routes, T)     # updating demands 
        demand_ct = demand_at.copy()                                 # demand current time and demand a
        dct_flag = 0                                                 # demand at current time 
        ss_tab, bd_tab = fleet_simulation(t, T, routes, buses, refuel, running_consumption,  
                                          service_consumption, refuel_stations, refuel_consumption, con
                                          demand_at, demand_ct, demand_r, demand_c, dct_flag, SS_cols, 
        ss_tab['Replication'] = h + 1 
        bd_tab['Replication'] = h + 1 
        ss_table = ss_table.append(ss_tab, ignore_index=True) 
        bd_table = bd_table.append(bd_tab, ignore_index=True) 
         
    replicates = n_rep 
    n_beta = (st.t.ppf(ci_n, df=replicates-1)*std_delay/np.sqrt(replicates)) 
    print('---\nThe new half-width', round(n_beta, 3), 'min') 
    print('Current replications -', replicates) 
    print('Number of bus deployments -', bd_table.shape[0]) 
''' 
print('---') 

In [6]: # half-width analysis 
print('---\nCurrent half-width - ', round(n_beta, 3), 'min') 
print('Current replications -', replicates) 
print('Number of bus deployments -', bd_table.shape[0]) 
if n_beta > beta: 
    s2_n =  (std_delay)**2 
    t = st.t.ppf(ci_n, df=replicates-1) 
    n_rep = int((t*np.sqrt(s2_n)/beta)**2) + 1 
    n_rep = int(n_rep*replicates/replicates) + 1 
    print('The extra replications to be done - ', n_rep-replicates)
     
     
# delay analysis on deployments 
num_delay = sum(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual'])>0) 
total_delay = sum(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']))) 
avg_delay = round(np.mean(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']
std_delay = round(np.std(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual'])
max_delay = max(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']))) 
 
# cost analysis 
run_time, ser_time, ref_time, emp_cost, fuel_cost, delay_cost = cost_analysis(n_buses, replicates, refu
                                                                              bd_table, emp_rate, fuel_
                                                                              refuel_consumption) 
 
print('---\nDelay Analyis') 
print('\tTotal number of replications (days) -', replicates) 
print('\tTotal number of delays -', num_delay) 



--- 
Current half-width -  0.936 min 
Current replications - 30 
Number of bus deployments - 4171 
--- 
Delay Analyis 
 Total number of replications (days) - 30 
 Total number of delays - 1147 
 Total delay in minutes - 4900.85 
 Average of delay events in minutes - 4.27 

 Average delay (all events) in minutes - 1.18 
 Std. Deviation of delay (all events) in minutes - 2.51 
 Maximum delay (all events) in minutes - 16.48 

 Total number of deployments - 4171 
 Total number of route deployments - 3870 
 Total number of refills deployments - 301 
--- 

Cost Analysis 
 Average running time for all buses per day in minutes - 4143.51 
 Average service time for all buses per day in minutes - 1504.54 
 Average refuel time for all buses per day in minutes - 27.28 

 Average employeee costs paid per day in dollars - 1419 
 Average fuel costs paid per day in dollars - 722 
 Average delay costs paid per day in dollars - 11762 
 Average maintenance costs paid per day in dollars - 9478 

(12.286, 87.66)

print('\tTotal delay in minutes -', round(total_delay, 2)) 
print('\tAverage of delay events in minutes -', round(total_delay/num_delay, 2)) 
 
print('\n\tAverage delay (all events) in minutes -', round(avg_delay, 2)) 
print('\tStd. Deviation of delay (all events) in minutes -', round(std_delay, 2)) 
print('\tMaximum delay (all events) in minutes -', round(max_delay, 2)) 
 
 
print('\n\tTotal number of deployments -', bd_table.shape[0]) 
print('\tTotal number of route deployments -', sum(bd_table['Route']!=refuel)) 
print('\tTotal number of refills deployments -', sum(bd_table['Route']==refuel)) 
 
print('---\n\nCost Analysis') 
print('\tAverage running time for all buses per day in minutes -', run_time) 
print('\tAverage service time for all buses per day in minutes -', ser_time) 
print('\tAverage refuel time for all buses per day in minutes -', ref_time) 
 
print('\n\tAverage employeee costs paid per day in dollars -', emp_cost) 
print('\tAverage fuel costs paid per day in dollars -', fuel_cost) 
print('\tAverage delay costs paid per day in dollars -', delay_cost) 
print('\tAverage maintenance costs paid per day in dollars -', round(maintain_rate*(run_time+ser_time+r

In [7]: # Charge distribution 
ss_table['Charge'].min(), ss_table['Charge'].max() 

Out[7]:

In [8]: delay_arr = np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']) 
ecdf(delay_arr, 'Delay (min)') 
inv_ecdf(delay_arr, 'Delay (min)') 



Testing Area
Testing for route demands

In [9]: ss_table.to_parquet(path+'ss_table_'+refuel+'_'+np.str(n_buses)+'_'+ 
                    np.str(level_mean)+'_'+np.str(running_consumption)+'_'+ 
                    np.str(service_consumption)+'.parquet') 
bd_table.to_parquet(path+'bd_table_'+refuel+'_'+np.str(n_buses)+'_'+ 
                    np.str(level_mean)+'_'+np.str(running_consumption)+'_'+ 
                    np.str(service_consumption)+'.parquet') 

In [10]: # route demand functions 
array_t = np.array(range(0, 12*60+1, 60)) 
 
# https://ltp.umich.edu/wp-content/uploads/bursley_baits.pdf 
a, b, c, d = 0, 4, 0, 1 
plt.plot(array_t, np.ceil(a*np.sin((array_t+c)/d) + b),  
         color='r', label='bus_1', marker='o') 
 
# https://ltp.umich.edu/wp-content/uploads/northwood.pdf 
a, b, c, d = 1.5, 1.5, -180, 180 
plt.plot(array_t, np.ceil(a*np.sin((array_t+c)/d) + b),  
         color='b', label='bus_2', marker='o') 
 
# https://ltp.umich.edu/wp-content/uploads/diag_diag.pdf 
a, b, c, d = 3, 1, -60, 180
plt.plot(array_t, np.ceil(a*np.sin((array_t+c)/d) + b),  
         color='g', label='bus_3', marker='o') 
 
# https://ltp.umich.edu/wp-content/uploads/oxford_shuttle.pdf 
a, b, c, d = 2, 1, -320, 180 
plt.plot(array_t, np.ceil(a*np.sin((array_t+c)/d) + b),  
         color='black', label='bus_4', marker='o') 



 
plt.xlabel('Time') 
plt.ylabel('Buses') 
plt.legend() 
plt.show() 



In [ ]: import pandas as pd 
import numpy as  np 
import string as str 
import numpy.random as rand 
import matplotlib.pyplot as plt 
import scipy.stats as st 
import statsmodels.api as sm 

In [ ]: def route_time(routes, route_c, t): 
    time_ar = [] 
    if route_c.isnumeric(): 
        search_r = 'route_' + route_c 
    else: 
        search_r = route_c 
    sm_data = routes[routes.columns[routes.columns.str.match(search_r)]] 
    sm_data.dropna(inplace=True) 
    for i in range(sm_data.shape[0]): 
        if sm_data[search_r+'_index'][i]==0: 
            t_arr = rand.gamma(sm_data[search_r+'_mean'][i],  
                                 sm_data[search_r+'_std'][i])         # change distributions 
            t = t + t_arr 
        elif sm_data[search_r+'_index'][i]==1: 
            t_ser = rand.gamma(sm_data[search_r+'_mean'][i],  
                                 sm_data[search_r+'_std'][i])         # change distributions 
            t = t + t_ser 
        time_ar.append(round(t, 2)) 
    stops = np.array(sm_data[search_r+'_index']) 
    return list(time_ar), list(stops) 

In [ ]: class bus: 
    def __init__(self, charge, charge_std):            # Class initialization 
        self.charge = round(rand.normal(charge, charge_std), 3) 
        self.state = -1                                # deployed = 1, refill = 0, standstill = -1 
        self.route = None                              # route in string, eg. '1', 'refill', 'recharge'
        self.time_arr = list()                         # array containing travel or stop service times f
        self.event_arr = list()                        # array to denote travel or stop service state 
         
    def assign_route(self, routes, route_c, t):        # assigning a specific route to the bus 
        self.time_arr, self.event_arr = route_time(routes, route_c, t) 
        self.route = route_c 
        if (route_c=='refill')or(route_c=='recharge'): # deployed = 1, refill = 0, standstill = -1 
            self.state = 0 
        elif route_c.isnumeric():
            self.state = 1 
     
    def assign_route_varred(self, e_array, t_array, route_c, t):  # assigning a specific route to the b
        self.time_arr, self.event_arr = list(t_array), list(e_array) 
        self.route = route_c 
        if (route_c=='refill')or(route_c=='recharge'):  # deployed = 1, refill = 0, standstill = -1 
            self.state = 0 
        elif route_c.isnumeric():
            self.state = 1 
     
    def next_t(self):                       # passing the next event time 
        if len(self.time_arr)==0: 
            return np.inf 
        else: 
            return self.time_arr[0] 
     
    def next_e(self):                       # passing the next event type 
        if len(self.event_arr)==0: 
            return np.inf 
        else: 
            return self.event_arr[0] 
         
    def last_t(self):                       # passing the last event time for a route 
        if len(self.event_arr)==0: 
            return np.inf 
        else: 



            return self.time_arr[len(self.event_arr)-1] 
     
    def info(self):                         # all details passed as a dictionary for table insertion 
        bus_dict = {'charge': self.charge, 
                    'state' : self.state, 
                    'route' : self.route, 
                    'event' : self.event_arr[0]} 
        return bus_dict 

In [ ]: def gen_demands(routes, T): 
    dem = pd.read_excel('Model_Parameters.xlsx', 'Demands') 
    t_arr = np.array(range(0, T, 60)) 
    demand_r, demand_t, demand_c = [], [], [] 
    for row in dem.itertuples(index=False): 
        if row[0]<=routes: 
        # generating demands 
            route, a, b, c, d, charge = np.str_(row[0]), row[1], row[2], row[3], row[4], row[5] 
            demand = np.ceil(a*np.sin((t_arr+c)/d) + b)        # a distribution can also be used 
        # generating times wrt demands 
            for i, t in enumerate(t_arr): 
                if demand[i]>0: 
                    for t_d in range(0, 60, int(60/demand[i])): 
                        demand_t.append(round(t + t_d, 2)) 
                        demand_r.append(route) 
                        demand_c.append(charge) 
 
    demand_r.append(None) 
    demand_c.append(np.inf) 
    demand_t.append(np.inf) 
    all_dt = pd.DataFrame(columns=['routes', 'times', 'charge']) 
    all_dt['routes'] = demand_r 
    all_dt['times'] = demand_t 
    all_dt['charge'] = demand_c 
    all_dt = all_dt.sort_values(['times','routes'], ignore_index=True) 
    demand_r = np.array(all_dt['routes']) 
    demand_c = np.array(all_dt['charge']) 
    demand_t = np.array(all_dt['times']) 
    return list(demand_t), list(demand_r), list(demand_c) 

In [ ]: def next_bus_e(buses): 
    min_t = np.inf 
    index = None 
    for i in range(len(buses)): 
        if (buses[i].next_t()<min_t): 
            min_t = buses[i].next_t() 
            index = i 
    return min_t, buses[i].next_e(), index 
 
def available_bus(buses, dem_charge): 
    b_charges = [buses[i].charge for i in range(len(buses)) if buses[i].state==-1] 
    b_index = [i for i in range(len(buses)) if buses[i].state==-1] 
    index = -1 
    if len(b_charges)>0: 
        if (max(b_charges)>dem_charge): 
            for i in range(len(b_charges)): 
                if max(b_charges)==b_charges[i]: 
                    index = b_index[i] 
    return index 
 
def unavailable_bus(buses, min_charge): 
    b_charges = [buses[i].charge for i in range(len(buses)) if buses[i].state==-1] 
    b_index = [i for i in range(len(buses)) if buses[i].state==-1] 
    index = -1 
    if (len(b_charges)>0)and(min_charge!=np.inf): 
        if (min(b_charges)<min_charge): 
            for i in range(len(b_charges)): 
                if min(b_charges)==b_charges[i]: 
                    index = b_index[i] 
    return index 
 
def buses_status(buses): 



    n_dep = sum([1 for i in buses if i.state==1]) 
    n_ref = sum([1 for i in buses if i.state==0]) 
    n_stds = sum([1 for i in buses if i.state==-1]) 
    return n_dep, n_ref, n_stds 

In [ ]: def SS_update(SS_table, t, buses, dct, bus_e, t_updt, index=-1, dem_ct=0, dem_at=0, dem_c=0): 
    ss_d = {} 
    ss_d['Time'] = t_updt 
    ss_arr = [len(buses), dct] 
    ss_dep, ss_re, ss_ss = buses_status(buses) 
    ss_arr.append(ss_dep) 
    ss_arr.append(ss_re) 
    ss_arr.append(ss_ss) 
    ss_d['System_State'] = ss_arr 
    if index!=-1: 
        ss_d['Bus'] = index + 1 
        ss_d['Charge'] = buses[index].charge 
        ss_d['Route'] = buses[index].route 
        ss_d['State'] = buses[index].state 
    else: 
        ss_d['Bus'] = np.nan 
        ss_d['Charge'] = np.nan 
        ss_d['Route'] = None 
        ss_d['State'] = np.nan 
    ss_d['Event'] = bus_e 
    ss_d['Process_Time'] = t_updt - t     
    if dem_c==0: 
        ss_d['Demand_Current'] = np.nan 
        ss_d['Demand_Actual'] = np.nan 
        ss_d['Demand_Charge'] = np.nan 
    else: 
        ss_d['Demand_Current'] = dem_ct 
        ss_d['Demand_Actual'] = dem_at 
        ss_d['Demand_Charge'] = dem_c 
    SS_table = SS_table.append(ss_d, ignore_index=True) 
    return SS_table 
 
def BD_update(BD_table, t_updt, dem_ct, dem_at, dem_c, buses, index): 
    bd_d = {} 
    bd_d['Time'] = t_updt 
    bd_d['Demand_Current'] = dem_ct 
    bd_d['Demand_Actual'] = dem_at 
    bd_d['Demand_Charge'] = dem_c 
    bd_d['Bus'] = index + 1 
    bd_d['Charge'] = buses[index].charge 
    bd_d['Route'] = buses[index].route 
    bd_d['State'] = buses[index].state 
    bd_d['Event_Array'] = np.array(buses[index].event_arr) 
    bd_d['Time_Array'] = np.array(buses[index].time_arr) 
    BD_table = BD_table.append(bd_d, ignore_index=True) 
    return BD_table 

In [ ]: def fleet_simulation(t, T, routes, buses, refuel, running_consumption, service_consumption,  
                     refuel_stations, refuel_consumption, conversion_factor, 
                     demand_at, demand_ct, demand_r, demand_c, dct_flag, SS_cols, BD_cols): 
    ss_table = pd.DataFrame(columns=SS_cols) 
    bd_table = pd.DataFrame(columns=BD_cols) 
 
    # initial SS update 
    time_check = np.inf 
    ss_table = SS_update(ss_table, t, buses, dct_flag, np.nan, np.nan) 
     
    # previous times for fleet 
    prev_time = [np.nan]*len(buses) 
     
     
    t_check = [] 
    # Simulate! Simulate! Simulate!         
    while (t<T)or(time_check!=np.inf): 
        #print('---\nNew Event') 
        time_check = min(next_bus_e(buses)[0], demand_ct[0]) 



         
        # ----- 
        # Priority One: Updating demands 
        if ((demand_ct[0]!=np.inf) and 
            (demand_ct[0]==time_check)): 
            new_demand = [1 for i in range(len(demand_ct)) if demand_ct[i]==time_check] 
            dct_flag = sum(new_demand) 
            # testing 
            t = time_check 
         
        #---------- 
        # Main Switch Statements 
        bus_chk = available_bus(buses, demand_c[0]) 
         
        #----- 
        # Case 1: Sending low-fuel buses to refuel 
        refuel_index = unavailable_bus(buses, min(demand_c)) 
        if ((time_check!=np.inf) and ((t<T) or (dct_flag>0)) and 
            (refuel_index!=-1) and 
            (buses_status(buses)[1]<refuel_stations)):  
            # and(refuel_index!=np.inf)):- might create complications 
            dem_ct, dem_at, dem_c = np.nan, np.nan, np.nan 
            #print('\tSending Bus for Refuel') 
            msg = 'Sending Bus for Refuel' 
            buses[refuel_index].assign_route(routes, refuel, t) 
            prev_time[refuel_index] = t 
            bus_e = 0 
            t_updt = t 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, refuel_index) 
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, refuel_index) 
 
            t = t_updt 
            refuel_index = -1 
 
 
        #----- 
        # Case 2: Checking bus availability and deploying buses 
        elif ((t<T) and 
              (demand_ct[0]==time_check) and 
              (demand_ct[0]!=np.inf) and 
              (bus_chk!=-1)): 
 
            #print('\tDeploying Bus') 
            msg = 'Deploying Bus' 
            dem_ct, dem_at = demand_ct.pop(0), demand_at.pop(0) 
            dem_c, dem_r = demand_c.pop(0), demand_r.pop(0) 
            index = available_bus(buses, dem_c) 
            t_updt = dem_ct 
            buses[index].assign_route(routes, dem_r, t_updt) 
            prev_time[index] = t_updt 
            bus_e = 0 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, index, dem_ct, dem_at, de
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, index) 
            dct_flag -= 1 
            t = t_updt 
 
            dem_ct, dem_at, dem_c, dem_r = np.nan, np.nan, np.nan, np.nan 
            t_updt = np.nan 
            index = np.nan 
 
 
        #----- 
        # Case 3: Checking next bus event and updating SS 
        elif (((t<T) and 
              (next_bus_e(buses)[0]==time_check) and  
              (next_bus_e(buses)[0]!=np.inf) and  
              ((buses_status(buses)[0]>0) or (buses_status(buses)[1]>0))) or 
              (((t<T) and 
              (demand_ct[0]==time_check) and  
              (demand_ct[0]!=np.inf) and  
              (bus_chk==-1)))): 
 



            #print('\tUpdating next bus event') 
            msg = 'Updating next bus event' 
            index = next_bus_e(buses)[2] 
            t_updt = buses[index].time_arr.pop(0) 
            bus_e = buses[index].event_arr.pop(0) 
            diff_t = prev_time[index] 
             
            if (bus_e==1): 
                mul_c = running_consumption 
            elif (bus_e==0)and(buses[index].state==1): 
                mul_c = service_consumption 
            elif (bus_e==0)and(buses[index].state==0): 
                mul_c = refuel_consumption 
            buses[index].charge = round(buses[index].charge - (t_updt - diff_t)*mul_c*conversion_factor
 
            ss_table = SS_update(ss_table, diff_t, buses, dct_flag, bus_e, t_updt, index) 
            t = t_updt 
            prev_time[index] = t 
             
            # if its the last event for the bus, update bus parameters to standstill 
            if buses[index].next_e()==np.inf: 
                buses[index].state = -1 
                buses[index].route = None 
                buses[index].time_arr = list() 
                buses[index].event_arr = list() 
                prev_time[index] = np.nan 
            index = np.nan 
            t_updt = np.nan 
            bus_e = np.nan 
         
               
        #----- 
        # Case 4: All demands are completed within the timeframe  
        elif ((t<T) and 
              (time_check==np.inf)): 
            #print('\tJumping to EOD') 
            msg = 'Jumping to EOD' 
            t_updt = T 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt) 
            t = t_updt     
 
 
        #----- 
        # Case 5: Demands still exist beyond timeframe and need to be met 
        elif ((t>=T) and 
              (demand_ct[0]==time_check) and 
              (demand_ct[0]!=np.inf) and 
              (bus_chk!=-1)): 
            #print('\tDeploying Bus beyond timeframe') 
            msg = 'Deploying Bus beyond timeframe' 
            dem_ct, dem_at = demand_ct.pop(0), demand_at.pop(0) 
            dem_c, dem_r = demand_c.pop(0), demand_r.pop(0) 
            index = available_bus(buses, dem_c) 
            t_updt = dem_ct 
            buses[index].assign_route(routes, dem_r, t_updt) 
            prev_time[index] = t_updt 
            bus_e = 0 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, index, dem_ct, dem_at, de
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, index) 
            dct_flag -= 1 
            t = t_updt 
            dem_ct, dem_at, dem_c, dem_r = np.nan, np.nan, np.nan, np.nan 
            t_updt = np.nan 
            index = np.nan 
 
 
        #----- 
        # Case 6: Going beyond timeframe, checking deployed buses and updating SS 
        elif (((t>=T) and 
              (next_bus_e(buses)[0]==time_check) and 
              (next_bus_e(buses)[0]!=np.inf)) or 
              ((t>=T) and 
              (demand_ct[0]==time_check) and  
              (demand_ct[0]!=np.inf) and  



              (bus_chk==-1))): 
            #print('\tUpdating next bus event beyond timeframe') 
            msg = 'Updating next bus event beyond timeframe'
            index = next_bus_e(buses)[2] 
            t_updt = buses[index].time_arr.pop(0) 
            bus_e = buses[index].event_arr.pop(0) 
            diff_t = prev_time[index] 
            if (bus_e==1): 
                mul_c = running_consumption 
            elif (bus_e==0)and(buses[index].state==1): 
                mul_c = service_consumption 
            elif (bus_e==0)and(buses[index].state==0):                       # different for 'refill' a
                mul_c = refuel_consumption                                   # difference from 90 for r
            buses[index].charge = buses[index].charge - (t_updt - diff_t)*mul_c*conversion_factor 
            ss_table = SS_update(ss_table, diff_t, buses, dct_flag, bus_e, t_updt, index) 
            t = t_updt 
            prev_time[index] = t 
             
            # if its the last event for the bus, update bus parameters to standstill 
            if buses[index].next_e()==np.inf: 
                buses[index].state = -1 
                buses[index].route = None 
                buses[index].time_arr = list() 
                buses[index].event_arr = list() 
                prev_time[index] = np.nan 
            index = np.nan 
            t_updt = np.nan 
            bus_e = np.nan 
 
         
        #----- 
        # Case 7: All demands are completed outside the timeframe  
        elif ((t>=T) and 
              (time_check==np.inf)): 
            #print('\tJumping to EOD') 
            msg = 'Jumping to EOD' 
            t_updt = np.inf         
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt) 
            t = t_updt     
 
        # updating the current demand - if demand exists it'll automatically be updated
        demand_ct = list(np.sort(demand_ct)) 
        for k in range(dct_flag): 
            demand_ct[k] = t 
         
        # code to check if the program is running in loops 
        if len(t_check)<5: 
            t_check.append(t) 
        else: 
            t_check.pop(0) 
            t_check.append(t) 
        if (len(t_check)==5)and(t_check[0]==max(t_check)): 
            print('Stuck in a loop!') 
            print(msg) 
            ss_table.to_parquet('ss_check.parquet') 
            bd_table.to_parquet('bd_check.parquet') 
            print('\tTime -', t) 
            print('\tTime Check -', time_check) 
            print('\tDemands -', demand_ct[:6], demand_at[:6], demand_r[:6], demand_c[:6]) 
            print('\tdct_flag -', dct_flag) 
         
    return ss_table, bd_table 

In [ ]: def fleet_simulation_varred(t, T, routes, event_array, time_array, init_time, buses, refuel, running_co
                     service_consumption, refuel_stations, refuel_consumption, conversion_factor, 
                     demand_at, demand_ct, demand_r, demand_c, dct_flag, SS_cols, BD_cols): 
     
    ss_table = pd.DataFrame(columns=SS_cols) 
    bd_table = pd.DataFrame(columns=BD_cols) 
 
    # Initial SS update 
    time_check = np.inf 



    ss_table = SS_update(ss_table, t, buses, dct_flag, np.nan, np.nan) 
     
    # previous times for fleet 
    prev_time = [np.nan]*len(buses) 
     
    # Simulate! Simulate! Simulate!         
    while (t<T)or(time_check!=np.inf): 
        #print('---\nNew Event') 
        time_check = min(next_bus_e(buses)[0], demand_ct[0]) 
         
        # ----- 
        # Priority One: Updating demands 
        if ((demand_ct[0]!=np.inf) and 
            (demand_ct[0]==time_check)): 
            new_demand = [1 for i in range(len(demand_ct)) if demand_ct[i]==time_check] 
            dct_flag = sum(new_demand) 
            t = time_check 
         
        #---------- 
        # Main Simulation 
        bus_chk = available_bus(buses, demand_c[0]) 
 
        #----- 
        # Case 1: Sending low-fuel buses to refuel 
        refuel_index = unavailable_bus(buses, min(demand_c)) 
        if (((t<T) or(dct_flag>0)) and  # or (time_check!=np.inf) 
            (refuel_index!=-1) and 
            (buses_status(buses)[1]<refuel_stations)):  
            dem_ct, dem_at, dem_c = np.nan, np.nan, np.nan 
            #print('\tSending Bus for Refuel') 
            buses[refuel_index].assign_route(routes, refuel, t) 
            prev_time[refuel_index] = t 
            bus_e = 0 
            t_updt = t 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, refuel_index) 
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, refuel_index) 
 
            t = t_updt 
            refuel_index = -1 
 
 
        #----- 
        # Case 2: Checking bus availability and deploying buses 
        elif ((t<T) and 
              (demand_ct[0]==time_check) and 
              (demand_ct[0]!=np.inf) and 
              (bus_chk!=-1)): 
 
            #print('\tDeploying Bus') 
            dem_ct, dem_at = demand_ct.pop(0), demand_at.pop(0) 
            dem_c, dem_r = demand_c.pop(0), demand_r.pop(0) 
            index = available_bus(buses, dem_c) 
            t_updt = dem_ct 
            be_arr = event_array.pop(0) 
            bt_arr = np.array(time_array.pop(0)) 
            bit_arr = dem_ct - np.array(init_time.pop(0)) 
            buses[index].assign_route_varred(be_arr, bt_arr+bit_arr, dem_r, t_updt) 
            prev_time[index] = t_updt 
            bus_e = 0 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, index, dem_ct, dem_at, de
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, index) 
            dct_flag -= 1 
            t = t_updt 
 
            dem_ct, dem_at, dem_c, dem_r = np.nan, np.nan, np.nan, np.nan 
            t_updt = np.nan 
            index = np.nan 
 
 
        #----- 
        # Case 3: Checking next bus event and updating SS 
        elif (((t<T) and 



              (next_bus_e(buses)[0]==time_check) and  
              (next_bus_e(buses)[0]!=np.inf) and  
              ((buses_status(buses)[0]>0) or (buses_status(buses)[1]>0))) or 
              (((t<T) and 
              (demand_ct[0]==time_check) and  
              (demand_ct[0]!=np.inf) and  
              (bus_chk==-1)))): 
 
            #print('\tUpdating next bus event') 
            index = next_bus_e(buses)[2] 
            t_updt = buses[index].time_arr.pop(0) 
            bus_e = buses[index].event_arr.pop(0) 
            diff_t = prev_time[index] 
             
            if (bus_e==1): 
                mul_c = running_consumption 
            elif (bus_e==0)and(buses[index].state==1): 
                mul_c = service_consumption 
            elif (bus_e==0)and(buses[index].state==0):                       # different for 'refill' a
                mul_c = refuel_consumption                                   # difference from 90 for r
            buses[index].charge = round(buses[index].charge - (t_updt - diff_t)*mul_c*conversion_factor
 
            ss_table = SS_update(ss_table, diff_t, buses, dct_flag, bus_e, t_updt, index) 
            t = t_updt 
            prev_time[index] = t 
             
            # if its the last event for the bus, update bus parameters to standstill 
            if buses[index].next_e()==np.inf: 
                buses[index].state = -1 
                buses[index].route = None 
                buses[index].time_arr = list() 
                buses[index].event_arr = list() 
                prev_time[index] = np.nan 
            index = np.nan 
            t_updt = np.nan 
            bus_e = np.nan 
         
         
        #----- 
        # Case 4: All demands are completed within the timeframe  
        elif ((t<T) and 
              (time_check==np.inf)): 
 
            #print('\tJumping to EOD') 
            t_updt = T 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt) 
            t = t_updt     
 
 
        #----- 
        # Case 5: Demands still exist beyond timeframe and need to be met 
        elif ((t>=T) and 
              (demand_ct[0]==time_check) and 
              (demand_ct[0]!=np.inf) and 
              (bus_chk!=-1)): 
 
            #print('\tDeploying Bus beyond timeframe') 
            dem_ct, dem_at = demand_ct.pop(0), demand_at.pop(0) 
            dem_c, dem_r = demand_c.pop(0), demand_r.pop(0) 
            index = available_bus(buses, dem_c) 
            t_updt = dem_ct 
            be_arr = event_array.pop(0) 
            bt_arr = np.array(time_array.pop(0)) 
            bit_arr = dem_ct - np.array(init_time.pop(0)) 
            buses[index].assign_route_varred(be_arr, bt_arr+bit_arr, dem_r, t_updt) 
            prev_time[index] = t_updt 
            bus_e = 0 
 
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt, index, dem_ct, dem_at, de
            bd_table = BD_update(bd_table, t_updt, dem_ct, dem_at, dem_c, buses, index) 
            dct_flag -= 1 
            t = t_updt 
 



            dem_ct, dem_at, dem_c, dem_r = np.nan, np.nan, np.nan, np.nan 
            t_updt = np.nan 
            index = np.nan 
 
 
        #----- 
        # Case 6: Going beyond timeframe, checking deployed buses and updating SS 
        elif (((t>=T) and 
              (next_bus_e(buses)[0]==time_check) and 
              (next_bus_e(buses)[0]!=np.inf)) or 
              ((t>=T) and 
              (demand_ct[0]==time_check) and  
              (demand_ct[0]!=np.inf) and  
              (bus_chk==-1))): 
             
            #print('\tUpdating next bus event beyond timeframe') 
            index = next_bus_e(buses)[2] 
            t_updt = buses[index].time_arr.pop(0) 
            bus_e = buses[index].event_arr.pop(0) 
            diff_t = prev_time[index] 
             
            if (bus_e==1): 
                mul_c = running_consumption 
            elif (bus_e==0)and(buses[index].state==1): 
                mul_c = service_consumption 
            elif (bus_e==0)and(buses[index].state==0):                       # different for 'refill' a
                mul_c = refuel_consumption                                   # difference from 90 for r
            buses[index].charge = buses[index].charge - (t_updt - diff_t)*mul_c*conversion_factor 
 
            ss_table = SS_update(ss_table, diff_t, buses, dct_flag, bus_e, t_updt, index) 
            t = t_updt 
            prev_time[index] = t 
             
            # if its the last event for the bus, update bus parameters to standstill 
            if buses[index].next_e()==np.inf: 
                buses[index].state = -1 
                buses[index].route = None 
                buses[index].time_arr = list() 
                buses[index].event_arr = list() 
                prev_time[index] = np.nan 
            index = np.nan 
            t_updt = np.nan 
            bus_e = np.nan 
 
        #----- 
        # Case 7: Jumping to next demand  
        elif ((t>=T) and (bus_chk==-1) and 
              (demand_ct[0]==time_check) and  
              (demand_ct[0]!=np.inf)): 
            #print('\tJumping to next demand') 
            msg = 'Jumping to next demand' 
            t = next_bus_e(buses)[0] 
            #dct_flag += 1 
         
        #----- 
        # Case 8: All demands are completed outside the timeframe  
        elif ((t>=T) and 
              (time_check==np.inf)): 
 
            #print('\tJumping to EOD') 
            msg = 'Jumping to EOD' 
            t_updt = np.inf         
            ss_table = SS_update(ss_table, t, buses, dct_flag, bus_e, t_updt) 
            t = t_updt     
         
        # updating all current demand times 
        demand_ct = list(np.sort(demand_ct)) 
        for k in range(dct_flag): 
            demand_ct[k] = t 
             
    return ss_table, bd_table 

In [ ]:



def cost_analysis(n_buses, replicates, refuel, ss_table, bd_table, emp_rate, fuel_rate, delay_rate, ref
    ss_table['Process_Time'].replace({np.inf: 0}, inplace=True) 
    ss_table['Demand_Charge'].replace({np.nan: -1}, inplace=True) 
    cost_ss = ss_table[(ss_table['Demand_Charge'])==-1][['Bus', 'Route', 'Event', 'Process_Time']].drop
 
    runcost_ss = cost_ss[cost_ss['Event']==1] 
    sercost_ss = cost_ss[(cost_ss['Event']!=1)&(cost_ss['Route']!=refuel)] 
    refcost_ss = cost_ss[(cost_ss['Event']!=1)&(cost_ss['Route']==refuel)] 
    runcost_ss = runcost_ss[['Bus', 'Process_Time']].groupby('Bus').sum()/replicates 
    sercost_ss = sercost_ss[['Bus', 'Process_Time']].groupby('Bus').sum()/replicates 
    refcost_ss = refcost_ss[['Bus', 'Process_Time']].groupby('Bus').sum()/replicates 
 
    run_time = round(np.sum(runcost_ss['Process_Time']), 2) 
    ser_time = round(np.sum(sercost_ss['Process_Time']), 2) 
    ref_time = round(np.sum(refcost_ss['Process_Time']), 2) 
    emp_cost = round((run_time + ser_time + ref_time)*emp_rate/60) 
    fuel_cost = round(ref_time*refuel_consumption*-1*fuel_rate) 
    tot_delay = round(sum(np.nan_to_num(np.array(bd_table['Demand_Current'] - bd_table['Demand_Actual']
    delay_cost = round(tot_delay* delay_rate) 
    return run_time, ser_time, ref_time, emp_cost, fuel_cost, delay_cost 

In [ ]: def ecdf(target, title): 
    numbs = np.array(target) 
    ecdf = sm.distributions.ECDF(numbs) 
    x = np.linspace(min(numbs), max(numbs), len(target)) 
    y = ecdf(x) 
    plt.step(x, y, color='r') 
    plt.xlabel(title) 
    plt.ylabel('CDF(P)') 
    plt.title('Empirical CDF of ' + title) 
    plt.show() 
    return 
 
def inv_ecdf(target, title): 
    numbs = np.array(target) 
    ecdf = sm.distributions.ECDF(numbs) 
    x = np.linspace(min(numbs), max(numbs), len(target)) 
    y = 1-ecdf(x) 
    plt.step(x, y, color='r') 
    plt.xlabel(title) 
    plt.ylabel('Inverse CDF(P)') 
    plt.title('Inverse Empirical CDF of ' + title) 
    #plt.gca().invert_yaxis() 
    plt.show() 
    return 
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